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On Plastic Zones and Fracture Strengths in 
Some Metal Matrix Composites 

J.F. Zarzour and A.J. Paul 

Based on a Dugdale-type approach for cancelling the singularity at the crack tip, an attempt was made to 
predict the overall stress distributions, as well as the size of the plastic zone found in notched metal matrix 
composite plate. The work was developed by considering notched, unidirectionally reinforced fibrous 
metal matrix composite plate under uniform normal tension load. Predictions of the proposed method 
were compared with the experimental results, and a fairly good agreement was observed. Simple closed 
form expressions for the local stresses and fracture strength are provided. 

1. Introduction 

EXPERIMENTAL observations of notched metal matrix compos- 
ite plate have revealed the existence of matrix yielding between 
fibers and in locations remote from the notch tip. Details of 
these observations are discussed by Awerbuch and Hahn, [1] 
Reedy, [2,3] Poe and Sova, [4] and Dvorak and Bahei-E1-Din. [5] 
These plastic deformations, which take place at loads well be- 
low the fracture load, are described as discrete plastic shear 
bands with length scales that exceed the length of the notch by 
several orders of magnitude. The presence of this large-scale 
plasticity produces notch-tip blunting and gives rise to stress 
redistribution ahead of the notch tip. Therefore, for a sound un- 
derstanding of the strength of these composites, it is important 
to obtain an accurate evaluation of the length of these zones, as 
well as the local stress fields ahead of the notch tip. 

Awerbuch and Hahn [1] characterized the matrix damage by 
longitudinal shear band deformation. Similarly, the experimen- 
tal results of Dvorak and Bahei-E1-Din, [5] using the bar code 
technique, for center-notched B/AI composites (Fig. 1), have 
indicated the existence of plastic zone deformations that are 3 
to 17 times the length of the original notch and about 0.2 mm 
wide (Fig. 2). Most of the existing methods for determining 
these zones relied on the application of the J-integral and finite- 
element analysis. Such methods were developed and discussed 
by Rice, [7] McClintock, [8] Tirosh, [9] and recently by Bahei- El- 
Din et aL ll~ Others have used dislocation models to represent 
the plastic zone, mainly Bibly and Swinden, [1U Riedel, [12] 
Vitek, [13] and Kujawski and Ellyin. [14] Unlike these computa- 
tional methods where the solution is rather "expensive," the 
present work presents a simple numerical scheme for obtaining 
the length of these zones. 

2. Numerical Model 

The strip yield model, developed by Dugdale, [15] provides 
the solution for the dimensions of the localized plastic zone at a 
crack tip. In this model, the effective crack length is longer than 
the physical length, and the additional crack increment is con- 
sidered to be at yield. Consequently, a stress singularity cannot 

exist at the notional crack tip, because at that point the stress 
cannot exceed the yield strength of an elastic-perfectly plastic 
material. Accordingly, the present analysis models the plastic 
zones as vertical cracks loaded by the composite flow stress in 
shear x*, which was confirmed by Bahei-EI-Din et al.[l~ using 
finite-element analysis to be the only significant stress compo- 
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Fig. 1 Geometry of center-notched specimens under uniform 
normal load. 
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Fig. 2 Discrete plastic zones at the notch tip found by the bar 
code technique. [6] 

nent in the plastic zone. Therefore, the two vertical cracks, to- 
gether with the original notch, form an H-crack configuration 
loaded remotely by a uniform axial tension, p0, and locally by 
the composite flow stress in shear, z* (see Fig. 3). Following the 
principle of superposition, the configuration of Fig. 3 can be 
decomposed into two configurations, as shown in Fig. 3(a) and 
Fig. 3(b), respectively. It follows that the effective mode II 
stress-intensity factor at each tip of the H-crack, KII(A), can be 
obtained as the sum of Kn(A) from each configuration: 

KII(A)(R/c ' pO/.c, ) = KII(A)(R/c ' pO) + KII(A)(R/c ' ,r [11 

where R/c is the ratio of the plastic zone height to the half crack 
length. The length of  the plastic zone, R, is then obtained with 
the condition that KII(A)(R/c, pO/~.) must vanish at each tip of  
the H-crack configuration. At the onset of fracture, the axial 
load, p0, the composite flow stress in shear, x*, and the notch 
length, 2c, are known. Thus, the value of R for which Eq 1 is 
satisfied represents the actual plastic zone height. An example 
that illustrates the calculation of R for the case of (pO/~.) = 1 
and c = 1 for the B/A1 composite is shown in Fig. 4. In actual 
calculations, the KII values were obtained at several R values. 
However, the plastic zone length R for which K n was equal to 
zero was found by interpolation. Because a closed form solu- 
tion for KII is not available in the literature, a numerical scheme 
for crack analysis proposed by Benveniste et a/. [16] was used. 
Material properties for the two metal matrix composite systems 
considered herein--B/A1 and Fp/Al--are shown in Table 1. 

For the center-notched B/A1 composite, Table 2 shows the 
corresponding results for R, predicted by the present model, as 
well as those found by Bahei-E1-Din eta/ .  [l~ using the finite- 

Fig. 3 Superposition of the H-crack under remote uniform axial tension, p0, and local piecewise uniform shear, x*, into (a) H-crack loaded 
only by the remote uniform axial tension, p0; (b) H-crack loaded only by the local piecewise uniform shear, x*. 
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6061AI ........................ 72.5 72.5 27.3 27.3 0.33 . . . . . . . . . . . .  
Boron ........................... 400.0 400.0 166.7 i66.7 0.20 . . . . . . . . . . . .  
6061AI/B (c/= 0.5) ...... 235.6 144.8 . . . . . . . . .  Experimental (Ref 6) 

237.3 143,1 55.1 ... 0.2i" 96 01142 1685-1710 Experimental (Ref 4) 
237.0 158,7 67.4 59.2 0.25 . . . . . . . . .  Self-consistent estimates 

Alumina ....................... 379 379 157.5 ... 0.203 . . . . . . . . .  
FP/AI (cf= 0.35) .......... 167.08 114,7 44.2 ... 0.279 115 0.02 482-580 Experimental (Ref 24) 

Table 2 Comparison of  Current Predictions of  Discrete Plastic Zone Lengths  (R) with Fini te-Element  Results  

Specimen dimensions Plastic zone length (R), mm 
Specimen No. W, mm 2c, mm 2c/W Pul, MPa R(a) R(b) R(c) 

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

11 .......................................................... 
12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

13  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

17  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

2 0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

2 1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

2 2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(a) Predicted by Bahei-El-Din et al. [10l (h) Present predictions. (e) 

19.1 0,5 0.026 1365 4.3 3.7 3.55 
19.1 0.5 0.026 1371 4.3 3.7 3.57 
19.1 1.3 0.068 1124 8.1 6.5 7.61 
19.1 1.3 0.068 1165 8.1 6.5 7.88 
50.8 2.5 0.050 929 10.0 9.77 12.0 
50.8 2.5 0.050 1051 12.5 11.5 13.6 
50.8 5.1 0.1 921 25.0 21.0 24.4 
50.8 5.1 0.1 934 25.0 22.0 24.8 
50.8 15.2 0.3 665 52.5 50.7 52.6 
50.8 15.2 0.3 666 52.5 50.7 52.7 
50.8 15.2 0.3 701 55.0 52.0 55.5 
50.8 15.2 0.3 645 50.0 49.5 51.1 
50.8 25.4 0.5 534 72.5 73.5 70.6 
50.8 25.4 0.5 502 67.5 69.0 66.4 

101.6 5.1 0.05 969 25.0 21.0 25.7 
101.6 10.2 0.1 790 42.5 41.0 42.0 
101.6 10.2 0.1 775 40.0 40.0 41.0 
101.6 30.5 0.3 541 80.0 80.5 86 
101.6 30.5 0.3 506 77,5 77,0 80.3 
101.6 30.5 0.3 470 75.0 74.0 74.6 
101.6 50.8 0.5 393 85.0 90.0 103 
101.6 50.8 0.5 382 85.0 90.0 101 
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Predicted by the equilibrium equation: R = CPul/X*, 

e l emen t  method.  Fair ly good agreement  is obta ined  even  when  
the  no t ch  and the free edges  of  the spec imen  are in close prox-  
imity. Othe r  in teres t ing features  of  the resul ts  show that  the 
plast ic  zone  length /ha l f -no tch  length  ratio, R/c, is inverse ly  
propor t iona l  to the  no tch  aspect  ratio, 2c/W. 

3, Fracture Initiation--Strength Prediction 

As descr ibed  earl ier  in this  work,  the p resence  of  long  dis- 
crete plast ic  zones  causes  no tch- t ip  b lun t ing  and  local stress re- 
dis t r ibut ion.  Thus,  it is be l i eved  that  mode l s  that  account  for  the 
deta i led p h e n o m e n a  at a crack tip do represen t  a more  real is t ic  
approach  to fracture of  the present  p roblem.  The  idea  of  aver-  
age stress technique ,  p roposed  by  N u i s m e r  and  Whi t ney  [17] and 
Dvorak  et at.  [6] is adopted  here  wi th  some s implif icat ions.  The  
cur ren t  model  is pos tu la ted  in the  fo l lowing  way: T he  onset  o f  
f rac ture  is cont ro l led  by the  average  normal  stress over  a mate-  
rial  r epresen ta t ive  vo lume  e l emen t  (o in the  vic ini ty  of  the no tch  
tip; f racture  will occur  when  the va lue  of  this  average  becomes  
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Table 1 Elastic Constants of  6061 A! (F), Boron (B/AI), and AI203 (FP/AI) 

Composite Fiber 
flow stress, diameter, Unnotched strength, 

Material EA, GPa ET, GPa GA, GPa GT, GPa VA x*,MPa (d), mm cun(min)/~un(max), MPa Reference 

12 

R / r  

Fig. 4 Evaluation of the plastic zone height, R, according to the 
Dugdale's model (K~ = P0 ~'~c). 
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Fig. 5 Modeling of the notch and the plastic zones by an H- 
crack configuration (a) and approximation of the H-crack by a 
single vertical crack loaded by the composite flow stress, ~* (b). 

equal to a critical value, such as the unnotched strength of the 
material. Following the evaluation of the length of the plastic 
zones, the local normal stress field generated ahead of the 
blunted notch tip can be determined. Suppose that the zone 
length R for a certain specimen has been determined and one is 
now interested in finding the corresponding normal stress aL 
ahead of the notch (see Fig. 5b). By superposition, the total nor- 
mal stress ~L can be decomposed into two parts: (Ylig and (Ypl, as 
shown in Fig. 6(a) and Fig. 6(c), respectively. In this case, (Ylig 
denotes a uniform ligament stress, which is simply a function of 
the applied load and the geometry of the specimen: 

where 2c is the length of  the notch, W is the width of the speci- 
men, and p0 is the applied tension load. ~pi, which has 
zero average stress over the ligament (from equilibrium consid- 
erations), depends primarily on the length of  the zone as well as 
the geometry of the specimen. Ideally, ~pi can be obtained with 
respect to the entire H-crack configuration, as shown in Fig. 
6(c). However, due to the stress shielding effect of the large 
plastic zone over the adjacent small distance co, the present cal- 
culations of CJpl are approximated based on the solution of a sin- 
gle crack of  length 2R, loaded by a piecewise uniform shear 
flow stress x* (see Fig. 5b). According to the exact solution of 
stress fields generated by a single crack under point-load con- 

-- --  [18] the ditions, in an infinite orthotropic meolu,,,, case of point- 
concentrated loads in shear Q, as shown in Fig. A-1 of the 
Appendix, admits the following stress potential functions: 

1 Q I-R2 -- $2-]1 / 2 

_ __ i i 
I::iI(Zl) -- (S 2 SI)  (z 1 - s) LZl - ] 

1 Q ~ R  2 _ $2]1 / 2 

I z~L-~-_ sZ I t lJ(z2)  -- (S 1 -- $2) (2 2 - S) i 2 - J 

where s 1 and s 2 are the roots of the characteristic equation (see 
Ref 15), and s is the distance between the position of the applied 
load and the origin of the local reference frame of  the crack. 
The z 1 and z 2 quantities are two complex variables given by: 

Z 1 = X + S l Y  

z 2 = x + s2Y [3] 

Therefore, the expression of the normal stress component (~pl 
can be written as: 

O'pl = 2Rels2dP(Zl  ) + s21/J(z2 )] [41 

and, according to Fig. 5 (b), the integration of the point loads so- 
lution along the crack length is given by: 

(s z - Sl)Cl,(z 0 

Q (i "0 (R 2 - s2)1/2 fR(R2 - s2)~/2 ] 
= , d s  - j d s  } 

2rc(zl 2 - R 2 ) / ~ J - g  z 1 - s o z 1 - s j 

(S 1 -- Sz)l'IJ(z2) 

: o {.i .o 
2g(z 2 - R 2 )  1/2 -R z 2 - s  0 Z 2 - s  J 

[5] 

Identifying Q = ~* and substituting the solution of Eq 5 into Eq 
4, one finds the final form of the normal stress field as (for ex- 
plicit derivations, see the Appendix): 

f 1/2 

o.y><:.el E(i  / P ' [g(S 2 - s l )  Z 1 /R) 2 -  1 

+ - -  - + i In (oce) 
l~(S 1 _ S 2  ) (Z 2 / R )  2 - 1  j 

[6] 

where 

0~1, 2 -- 

2 
(Zl,2/R)2+ 2iI(Zl, 2 / R )  - l l l /z_2 

(21, 2 / R )  2 

Because the stress of interest is the normal component acting 
ahead of the notch tip, over a distance co, (x = 0), as shown in 
Fig. 5(b). Therefore, Eq 6 can be greatly simplified. The com- 
plex variables z 1 and z 2 now have the form: 

Z 1 = SlY 

22 = s2Y 
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In addition, for a unidirectional composite system, the material 
principal axes coincide with the Cartesian axes, and the roots s 1 
and s 2 are purely imaginary: [!9] 

z 1 = ialY 

Z 2 = ia2Y 

where a 1 and a 2 denote the imaginary parts ofs  1 and s 2, respec- 
tively. With these simplifications, the solution ofEq 6 can be re- 
duced to the following form: 

t~pl(0,y) / %, - 2 {a2[ 1 _ in (~1)] 
/~(a 2 - a 1) (1 + a2(y / R)2) 1/2 

+ a 2 [  1 In (ot2)] } [7] 
2 (1 + a~ (y / R)2) 1/2 + 

where 

1 + [1 +a2,2(Y/R)21 ~/2 

~1,2 - a l , z (y  / R) 

Note that as y approaches zero in Eq 7, (Ypl exhibits a logarith- 
mic singularity. 

Finally, the overall normal stress component (eL= (Ylig + 
Opt) ahead of the notch tip (x = 0) can now be written as: 

{ a2 [  1 - l n  (o~1) ] + 2 x * / g ( a 2 - a l )  1 ( l+a~(y /R)2)  1/2 

+ a~[(1 -1 + in (~2)] ~ [8] + a2(y / R)2)'/2 J J 

The next step in the analysis is to provide an average of Eq 8 
in the crack local reference system (along the y-axis), over a 
small distance to from the crack midlength, as shown in Fig. 
5(b). The corresponding average stress field is (see Appendix 
for detailed derivations): 

I [-1 +(1 +(a  I/t)2) ~/2] 
+ 2"~* / ~(a 2 - al) -a~ In] I 

t L (al / t) J 

I-I + (I + (a2/t)2)'/2.] 
+ a92 In I [9] J L (a2 / t) 

where t = R/o. 
The choice of a material representative volume element 

(RVE) depends primarily on the material system in question. In 
the literature, there are many ways to choose a representative 
volume element. Herein, a unit cell in a periodic hexagonal ar- 
ray model of the B/A1 composite system is selected (see Ref 
10). Figure 7 shows a transverse plane geometry of such a cell. 
Accordingly, the width to can be determined as: 

= 2b = d(2n / 3"~cf) 14 [10] 

where d is the fiber diameter and cfis the fiber volume fraction. 
In the present analysis, d = 0.142 mm and cf= 0.5; hence, co = 
1.555 d = 0.22 mm. This length represents the dimension of the 
representative volume element in the y-direction; the specimen 
thickness is the other dimension. No other dimension was 
specified in the z-direction. 

In accordance with the fracture criterion stated earlier in this 
work, fracture is presumed to take place once the average of 
normal stress components over a representative volume ele- 
ment reaches the unnotched strength of the material. At that 
moment, the applied normal load coincides with the ultimate 
load-bearing capacity (p0 = Put). The corresponding criterion 
can be written in the following form: 

( ) re(a2 a 1)[ ( 1+~/1+a2~2 2c / - L-a 2 In Pul/  1 - ~ -  +2x* 
all3 

+a~ln  + ~ / ] - ~ u n = O  [11] 
a2~ )J 

where t~un is the unnotched strength, and ~ =-~/R. 
The use of Eq 11 necessitates an estimate of R, which was 

obtained numerically in the previous section. However, as indi- 
cated by Fig. 8, the computed results of the ratio of the plastic 
zone length to half crack length versus the ratio of overall stress 
to plastic zone shear stress at failure loads fall on a straight line. 
This linear relationship suggests that the plastic zone length can 
be found from a simple equilibrium condition of the normal 
forces in the direction of the applied load, as shown in Fig. 9. 
Hence, an estimate of the plastic zone at failure loads (p0 = Pul) 
can be given by: 

CPul 
R - [12] %. 

Table 2 shows the corresponding predictions of the plastic 
zones R. Substitution of Eq 12 into Eq 11 yields: 

/ i t  2c'~ ^ , -a~ln Pul I 1 - ~ - / + z x  I r~(a2-a  1) al ~ J 

(_I +~/I + a2132")] 
+a21n ~, a ~  J J  - ~ =0  [13] 

where 

CPul 
6 = _ 

toT,* 

The only unknown in Eq 13, which represents the final form of 
the strength prediction criterion, is the ultimate stress Pul, 
which needs to be found by iterations. Clearly, for an un- 
notched specimen (2c/W = 0), Eq 13 reduces to the following: 

Pul -- (Sun 
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Fig. 6 Schematic decomposition of the normal local stress component, OL, into ligament stress, Olig, and plastic zone-induced stress, Opl. 
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Fig. 7 Transverse plane geometry of a periodic fibrous composite. 

which, in essence, is compatible with the model. Furthermore, 
it also includes all parameters involved in the fracture process. 

i 

! 

6-Af, r~ = 0.5 
r '  ~ 98 MPII 

10' 

' _~. _e. =o___.~P r/~ 

QVI I I I I  S l reu /P l l u l t l r  Zone  S h e l r  $1~'tZl, O/r" 

2O 

Fig. 8 Computed values of the plastic zone length to the half 
crack length ratio, R/c, in terms of the ultimate load to the com- 
posite flow stress ratio, Pul/X*, at fracture loads. 

4. Experimental Verification 

The experimental justification of the model is examined 
here through comparison of current results with other experi- 
mental works. The first set of results is concerned with center- 
notched specimens of 6061 B/At in the as-fabricated condition. 
As shown in Fig. 10, the fracture data for specimens of 1 in. 
width (25.4 mm) were obtained from the experimental work of  
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Fig. 9 Free-body diagram of the upper half of the H-crack con- 
figuration under uniform normal ultimate load. 

Wright and Welch, [201 Poe and Sova, [41 Jones and Goree, [21! 
and Dvorak and Bahei-E1-Din. [6] These data are plotted with 
symbols of different shapes, whereas the solid curve represents 
the prediction of the present model. Due to the scattered values 
of the unnotched strength obtained from different sets of ex- 
periments, the predicted results were based on two values of the 
unnotched strength: an upper value of 1710 MPa and a lower 
value of 1685 MPa. Therefore, the corresponding predictions 
were normalized by an upper and lower value of Gun, respec- 
tively. Although the dashed line joining both ends of the curves 
describes the strength reduction contributed by the net liga- 
ment stress, the area between the straight dashed line and each 
curve denotes the strength reduction caused by the plastic zone. 
Also, Fig. 10 shows that for all 2c/Wratios, the experimental re- 
sults agreed well with those determined by the present model. 

Another set of results is shown in Fig. 11 for 2-in. (50.8- 
ram.) wide specimens of the same material. Again, the pre- 
dicted results were in good agreement with most of the 
experimental data. Direct comparison of  the results of the 1-in. 
specimens (Fig. 10) and 2-in. specimens (Fig. 11), indicates a 
slight shift in the predicted curves, which indicates a decrease 
in strength in the larger width specimens. Therefore, the width 
effect is clearly a factor in strength prediction. Other sets of re- 
sults show the prediction of  ultimate load to the composite flow 
stress ratio (Pul/'c*) for each of B/A1 and FP/AI composite sys- 
tems (Fig. 12 and 13). Although both composites exhibit a simi- 

B-AI, cf = 0,5 - -  Present Predictions 
W = 25.4 mm ---- r = (1 - 2c/W) 

i 1.0 i,%~.~" 

~o ~ " ~ = - - ~ -  Net L~ament Strength RalJo 
~O t~ 0 . 8 ~  . " , , ,  A ExperimentaIResults 

Wdght and Welch (1978) 
it~l 0.61 ' ~  " - - . . . .  <~ Awerbuch and Hahn (1979) 

I- ~ " Reedy (1980, 1982) 
/ ~ ~'~.,~ O Jones and Gorse (1983) 
6 0 . 4 1  ~ " - , , , , ,  x Dvoraketal.(1969) 

-- ~ : : ~  ~" o==171OMPa rC ~ 0.2 

a~ = 1628 MPa GO 0,( I I I I I 
.0 0.2 0.4 0.6 0.8 1.0 

Notch Length/Specimen Width, 2c/W 

Fig. 10 Fracture strength reduction in 1-in.-wide center- 
notched B/A1 specimens. Experimental data points are com- 
pared with the present predictions (solid lines). 

B-AI, c t = 0.5 - -  Present Predictions 
W = 50.8 mm ---- r - (1 - 2c/W) 
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0 8 t~ " ~ .  z:xpedmental HeSUltS 

-- t:P ' l \ ' ~  ~'~'~. A Wright and Welch (1978) 
lID I I ~ "~"~. I"1 Poe and Sova (1980) 

0.6J'- ~ " ~ , ~  "~'~,,~, O Jones and Garee (1983) 
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6 ]_ " ~ "-  
. 0.4 ~ ' . . . . . . .  
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Fig. 11 Fracture strength reduction in 2-in.-wide center-notched 
B/A1 specimens. Experimental data points are compared with 
the present predictions (solid lines). 

lar trend, the strength decrease in the FP/A1 composite in terms 
of the 2c/W ratio is more pronounced. 

5. Conclusion 

The proposed model for strength prediction in fibrous metal 
matrix composites revealed that the fracture strengths of all ex- 
amined specimens were controlled by an average local stress 
over a material representative volume element adjacent to the 
crack tip. The present model was proposed primarily to take 
into account the redistribution of local stress due to the plastic 
deformation at the crack tip. A Dugdale-type approach was 
then implemented to predict the length of these zones. In the 
process, the crack-interaction scheme proposed by Benveniste 
et al. [16] was used to numerically determine the stress-intensity 
factors in mode II for an H-crack in an infinite orthotropic ma- 
terial. The local normal stress was divided into two pa r t s - - a  
ligament stress, which is uniform over the uncracked ligament 
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Fig. 12 Fracture strength reduction in 1- and 2-in.-wide center- 
notched B/AI specimens. 

0 
0 . 0  

,I- W,,50.11 ram. 

012 0'.4 016 018 

2 c / W  

Fig. 13 Fracture strength reduction in 1- and 2-in.-wide center- 
notched FP/A1 specimens. 

of the specimen, and a plastic zone-induced stress, which has a 
zero average over the ligament. The latter was found to contrib- 
ute 30 to 40% of the overall local stress field. The elastic solu- 
tion of the otherwise discrete plastic zone was approximated by 
a single vertical crack of the same length and loaded by the flow 
stress of the composite material. The numerical results of this 
approximation correlate well with those found by experiment 
and by the finite-element method, Thus, a major simplification 
of the problem was obtained, because the fracture strength can 
now be predicted by a simple equation. The model is expected 
to be applicable to composites that exhibit similar localized 
plastic zones under uniform tensile loading condition. Finally, 
for future application, it is of interest to verify the possibility of 
expanding the current model to accommodate different crack 
orientations and applied loading conditions with respect to fi- 
ber direction. Other points of concern would be to characterize 
the limits of applicability of fracture variables. Such limits 
would certainly highlight the border of a small-scale yielding 
regime. 
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Appendix 
In this Appendix, a derivation for the average value of the 

plastic zone-induced normal stress, Opl, over a representative 
volume element, ~,  is performed. In the (x,y) coordinate system 
of Fig. 5, the average of opl along the y-axis over a real segment 
[tl,t2] can be written in the following general form: 

- 1 f2 - t "~ OP l(y)dy [All  
OPl- (t2 "1 j t 

Substitution Of Opl from Eq 5 into Eq A1 provides an integrable 
function, which depends explicitly on y as: 

~pl / z* = 2 l alJr 2 ft2 dy 
X(t2 - tl)(a2 - al) L t I (1 + K2y2) 1/2 

t 2 
- a 2 f  In (~ l )dY-a~;  2 dy ~ a2; z In (~2)] 

t, t, (1 +K~y2) '/z q j 

[A2] 

where K 1,2 = al,2/R and 

1 + [1 +K21,2y2] V2 

5 1 ,  2 = K 1 , 2 Y  

Evaluation of Eq A2 is somewhat cumbersome and necessi- 
tates integration by parts. Therefore, for the sake of simplicity, 
the following definitions are considered: 

I l = f 12 . ay 
22' /2 

t I ( l  +KlY ) 

12 = e jr2 In (al)dy 
t 1 

dy '3=( 
14 = e j'a In (ot2)dY 

t I 

[A31 

Hence, Eq A2 can be rewritten in the following way: 

s--to 

O 

I_ R I_  R _1 
I- - I  -I 

Fig. A-1 Geometry of a single crack loaded by concentrated 
shear loads. 

~pl / 17" = 2 + a~(l 4 13) ] [A4] x(t 2 - tl)(a 2 - al) [ a12(ll - 12) 

In what follows, the integration of each part of  Eq A3 will be 
considered separately. For instance, the evaluation of I 1 (or 13) 
is first obtained by considering a change of variable, KlY = t, 
which yields the following: 

~ 

1 rKlt2+(1+K2~2)l/2] 
I 1 = ~ -  I n / - -  - -  2 2 ~  

1 [Kltl+(l+Kltl) j [A5] 

Similarly, 13 is obtained from Eq A5 by simply replacing K l 
with K 2. A similar change of variable is made for I 2 (or 14) and 
the final expression is: 

= '1 In (Kl t l ) -  t 2 In (Klt2) + t 2 In r/1 + (1 + K 2 t~)~/2 t ~  n 12 

_tlln[l+(l+l(2t2~l/2] l [Kltl+(I+K2t2)I/21 
"', "l' j - ~ In ~ t] +(1 +K] ~)--~/2J 

[A6] 

and 14 is also obtained by substituting K a for K 1 in Eq A6. Fi- 
nally, after assembling the above terms, one can write the over- 
all expression for (Ypl, normalized by the composite flow stress, 
~*, in the following way: 
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2 - a  2 t 1 In Kit1 
-~Pl/'~*-~(tz-tl)(a2-al)~ L 1 + (1 + K2 ~)IA 

+ t 2 In 
Klt2 ) J  

+a2~tl In I - K2tl 
L l+(l+K2~t2)'/zj 

+t21n~+(l+K2~)'/=l]; [A7] 
( K2t2 ) 1 J 

The present goal is to average ~pl over a representative vol- 
ume element along the notch tip. Therefore, replacing t2 with m 
in Eq A7 and taking the limit as the other variable tl goes to 

zero, provides the final expression of the average value of the 
plastic zone-induced normal stress as: 

i r I + (1 + (a 1 //)2)1/2] 
re(a2 -- al) L (al / t) j 

/ 

r 1 + (1 + (a 2 //)2)1~ 
+ a 2 ln l j [mS] 

[_ (a 2 / t) 

where t = R/o~. 
It can be shown that for large ratios, R/T, in Eq A8, the rate 

of change in the slope of Opt/X* is very slow, which suggests 
that with large plastic zone R, the induced normal stress over a 
representative volume element is contributed primarily by a 
certain length of the zone and certainly not the full zone length. 
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